Coupling of electron and proton transfer in the photosynthetic water oxidase.

نویسندگان

  • F Rappaport
  • J Lavergne
چکیده

According to current estimates, the photosynthetic water oxidase functions with a quite restricted driving force. This emphasizes the importance of the catalytic mechanisms in this enzyme. The general problem of coupling electron and proton transfer is discussed from this viewpoint and it is argued that 'weak coupling' is preferable to 'strong coupling'. Weak coupling can be achieved by facilitating deprotonation either before (proton-first path) or after (electron-first path) the oxidation step. The proton-first path is probably relevant to the oxidation of tyrosine Y(Z) by P-680. Histidine D1-190 is believed to play a key role as a proton acceptor facilitating Y(Z) deprotonation. The pK(a) of an efficient proton acceptor is submitted to conflicting requirements, since a high pK(a) favors proton transfer from the donor, but also from the medium. H-bonding between Y(Z) and His, together with the Coulombic interaction between negative tyrosinate and positive imidazolium, are suggested to play a decisive role in alleviating these constraints. Current data and concepts on the coupling of electron and proton transfer in the water oxidase are discussed.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Proton and hydrogen currents in photosynthetic water oxidation.

The photosynthetic processes that lead to water oxidation involve an evolution in time from photon dynamics to photochemically-driven electron transfer to coupled electron/proton chemistry. The redox-active tyrosine, Y(Z), is the component at which the proton currents necessary for water oxidation are switched on. The thermodynamic and kinetic implications of this function for Y(Z) are discusse...

متن کامل

Mechanistic Considerations on Coupling of Electron and Protron Transfer Reactions and the Active Role of the Protein Matrix in Photosynthetic Oxidative Water Cleavage

Oxidative photosynthetic water cleavage into molecular oxygen and four protons occurs via a sequence of redox steps that are energetically driven by the strongly oxidizing cation radical P +. . This species formed as a result of light-induced charge separation in Photosystem II becomes reduced by Y Z thus generating ox Z Y that in turn oxidizes stepwise the catalytic site of the water-oxidizing...

متن کامل

ENERGY TRANSDUCTION BY COUPLING OF PROTON TRANSLOCATION TO ELECTRON TRANSFER BY THE CYTOCHROME bc, COMPLEX*

The cytochrome bcl complex is an oligomeric membrane protein complex which is a component of the mitochondrial respiratory chain and of the electron transfer chains of numerous bacteria which use oxygen, nitrogen, and sulfur compounds as terminal electron acceptors. The cytochrome bcl complex also participates in the cyclic transfer of electrons to and from the photosynthetic reaction centers i...

متن کامل

The water channel of cytochrome c oxidase: inferences from inhibitor studies.

Cytochrome c oxidase couples electron transfer to proton transfer from inside the mitochondrion to the cytosol. Protons pass through a channel; it is closed except when protons are pumped. Electron transfer is also coupled to a water cycle. Water moves into and out of the oxidase during electron transfer, presumably through a channel. The three processes are coupled because of the common depend...

متن کامل

Proton uptake controls electron transfer in cytochrome c oxidase.

In cytochrome c oxidase, a requirement for proton pumping is a tight coupling between electron and proton transfer, which could be accomplished if internal electron-transfer rates were controlled by uptake of protons. During reaction of the fully reduced enzyme with oxygen, concomitant with the "peroxy" to "oxoferryl" transition, internal transfer of the fourth electron from CuA to heme a has t...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Biochimica et biophysica acta

دوره 1503 1-2  شماره 

صفحات  -

تاریخ انتشار 2001